Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Rheumatology (United Kingdom) ; 62(Supplement 2):ii135-ii136, 2023.
Article in English | EMBASE | ID: covidwho-2326665

ABSTRACT

Background/Aims Through the COVID pandemic there have emerged reports of autoimmunity or new rheumatic diseases presenting in patients after they had COVID-19. This is thought to be caused by cross-reactivity of the COVID-19 spike protein to human antigens. Given the use of mRNA COVID-19 vaccinations which express the spike protein we might expect to see presentation of new rheumatic diseases following their use. We discuss a case where this appears to have occurred. Methods Our patient is a 24-year-old male with mixed phenotype acute leukaemia who had been treated with allogenic stem cell transplant and was currently in remission. He presented with fevers, palpitations, myalgia and bilateral arm and leg swelling. Symptoms began the day after receiving the first dose of an mRNA COVID-19 vaccination (Pfizer/BioNTech.) There were no other symptoms or recent change in medications. Physical examination revealed tender oedema in his forearms, biceps and thighs bilaterally with sparring of the hands. He had reduced power with shoulder (MRC 3/5), elbow (4), wrist (4+) and hip (4) movements. Observations revealed tachycardia and fevers up to 40C. Results Laboratory studies showed markedly elevated C-reactive protein (202), creatinine kinase (6697) and troponin (593) whilst investigations for infection were negative. An autoimmune panel was positive for anti- PM-SCL-75-Ab. An electrocardiogram showed sinus tachycardia. Echocardiogram was normal. Bilateral upper limb dopplers revealed no deep vein thrombus. An MRI of his thighs showed diffuse symmetrical oedema within the muscles, in keeping with an inflammatory myositis. A quadricep muscle biopsy showed evidence of MHC class 1 up-regulation, suggesting an inflammatory process. In addition, there were numerous macrophages evident in the endomysium. While this can be seen in graft-versus-host disease (GVHD), they would usually be found in the perimysium. After discussion between haematology, rheumatology and neurology, this was felt to be a case of vaccine induced myositis and myocarditis. Autoimmune myositis was thought to be less likely due to the relative sparing of the hands and the absence of Raynaud's phenomenon. 1 gram of intravenous methylprednisolone was then given for 3 days. The patient had a marked response with defervescence, improving laboratory markers, improved myalgia and decreased limb swelling. The patient was stepped down to a reducing regime of prednisolone and discharged. Due to relapse whilst weaning he has started on mycophenalate mofetil and rituximab and now continues to improve. Conclusion There are case reports of myositis following COVID-19 vaccination but our patient's case is complicated by the differential diagnosis of GVHD and concurrent myocarditis. Ongoing work is needed to clarify the exact link between vaccination and the presentation of a new inflammatory myositis, but it is important to recognise and start treatment early in order to preserve muscle bulk and ensure recovery.

2.
J Mol Biol ; 435(2): 167891, 2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2236436

ABSTRACT

Phosphorylation of SARS-CoV-2 nucleoprotein recruits human cytosolic 14-3-3 proteins playing a well-recognized role in replication of many viruses. Here we use genetic code expansion to demonstrate that 14-3-3 binding is triggered by phosphorylation of SARS-CoV-2 nucleoprotein at either of two pseudo-repeats centered at Ser197 and Thr205. According to fluorescence anisotropy measurements, the pT205-motif,presentin SARS-CoV-2 but not in SARS-CoV, is preferred over the pS197-motif by all seven human 14-3-3 isoforms, which collectively display an unforeseen pT205/pS197 peptide binding selectivity hierarchy. Crystal structures demonstrate that pS197 and pT205 are mutually exclusive 14-3-3-binding sites, whereas SAXS and biochemical data obtained on the full protein-protein complex indicate that 14-3-3 binding occludes the Ser/Arg-rich region of the nucleoprotein, inhibiting its dephosphorylation. This Ser/Arg-rich region is highly prone to mutations, as exemplified by the Omicron and Delta variants, with our data suggesting that the strength of 14-3-3/nucleoprotein interaction can be linked with the replicative fitness of the virus.

3.
Front Cell Infect Microbiol ; 11: 752899, 2021.
Article in English | MEDLINE | ID: covidwho-1599649

ABSTRACT

The continued proliferation of superbugs in hospitals and the coronavirus disease 2019 (COVID-19) has created an acute worldwide demand for sustained broadband pathogen suppression in households, hospitals, and public spaces. In response, we have created a highly active, self-sterilizing copper configuration capable of inactivating a wide range of bacteria and viruses in 30-60 seconds. The highly active material destroys pathogens faster than any conventional copper configuration and acts as quickly as alcohol wipes and hand sanitizers. Unlike the latter, our copper material does not release volatile compounds or leave harmful chemical residues and maintains its antimicrobial efficacy over sustained use; it is shelf stable for years. We have performed rigorous testing in accordance with guidelines from U.S. regulatory agencies and believe that the material could offer broad spectrum, non-selective defense against most microbes via integration into masks, protective equipment, and various forms of surface coatings.


Subject(s)
Anti-Infective Agents , COVID-19 , Anti-Bacterial Agents , Humans , Personal Protective Equipment , SARS-CoV-2
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.23.474009

ABSTRACT

The SARS-CoV-2 nucleocapsid protein (N) is responsible for the viral genome packaging and virion assembly. Being highly abundant in the host cell, N interacts with numerous human proteins and undergoes multisite phosphorylation in vivo. When phosphorylated within its Ser/Arg-rich region, a tract highly prone to mutations as exemplified in the Omicron and Delta variants, N recruits human 14-3-3 proteins, potentially hijacking their functions. Here, we show that in addition to phosphorylated Ser197, an alternative, less conserved phosphosite at Thr205, absent in SARS-CoV N, binds 14-3-3 with micromolar affinity and is in fact the preferred binding site. Fluorescence anisotropy reveals a distinctive pT205/pS197 binding selectivity towards the seven human 14-3-3 isoforms. While explaining the structural basis for the discovered selectivity towards SARS-CoV-2 N phosphopeptides, our crystal structures enable prediction of N interactions with 14-3-3, suggesting a link between the strength of this interaction and replicative fitness of emerging coronavirus variants.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome
5.
Prev Med Rep ; 24: 101633, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1510185

ABSTRACT

Complementary and alternative medicine (CAM) use is widespread and has played critical roles in preventing infections, including previous coronaviruses. This study sought to document current practices in the use of CAM for the prevention of COVID-19 disease in Ghana. An anonymous electronic survey was conducted from February 1, 2021 to April 30, 2021. Data on demographic characteristics, basic clinical information, illness perceptions about COVID-19, and CAM use during the pandemic period were generated. While about 82.5% (986/1195) of the participants used CAM during the COVID-19 period, 69.1% (681/986) of CAM users intented it for COVID-19 infection prevention. Vitamin supplements (88.1%, 869/986), spiritual healing/prayer (23.3%, 230/986), mineral supplements (22.3%, 220/986), botanical/herbal medicines (22.2%, 219/986), and diet therapy (19.4%, 191/986) were the main types of CAM used. From the adjusted binary logistic regression model, current age (aOR: 1.03, 95%CI: 1.01-1.05), sex (aOR: 1.41, 95%CI: 1.02-1.95), participants' perceptions of consequences (aOR: 1.10, 95%CI: 1.04-1.17), identity (aOR: 1.15, 95%CI: 1.06-1.25) and concerns about COVID-19 (aOR: 0.91, 95%CI: 0.85-0.97) were statistically significant predictors of CAM use. These results suggest the need for appropriate public health policy on COVID-19 and CAM use in addition to directing further research initiatives toward an optimized COVID-19 prevention scheme using clinically validated CAM treatments. Research to validate the clinical efficacy of these products, especially the herbs, for COVID-19 prevention while isolating lead compounds that could be optimized and used for the treatment and prevention of COVID-19 is also recommended.

6.
J Mol Biol ; 433(8): 166875, 2021 04 16.
Article in English | MEDLINE | ID: covidwho-1108437

ABSTRACT

The coronavirus nucleocapsid protein (N) controls viral genome packaging and contains numerous phosphorylation sites located within unstructured regions. Binding of phosphorylated SARS-CoV N to the host 14-3-3 protein in the cytoplasm was reported to regulate nucleocytoplasmic N shuttling. All seven isoforms of the human 14-3-3 are abundantly present in tissues vulnerable to SARS-CoV-2, where N can constitute up to ~1% of expressed proteins during infection. Although the association between 14-3-3 and SARS-CoV-2 N proteins can represent one of the key host-pathogen interactions, its molecular mechanism and the specific critical phosphosites are unknown. Here, we show that phosphorylated SARS-CoV-2 N protein (pN) dimers, reconstituted via bacterial co-expression with protein kinase A, directly associate, in a phosphorylation-dependent manner, with the dimeric 14-3-3 protein, but not with its monomeric mutant. We demonstrate that pN is recognized by all seven human 14-3-3 isoforms with various efficiencies and deduce the apparent KD to selected isoforms, showing that these are in a low micromolar range. Serial truncations pinpointed a critical phosphorylation site to Ser197, which is conserved among related zoonotic coronaviruses and located within the functionally important, SR-rich region of N. The relatively tight 14-3-3/pN association could regulate nucleocytoplasmic shuttling and other functions of N via occlusion of the SR-rich region, and could also hijack cellular pathways by 14-3-3 sequestration. As such, the assembly may represent a valuable target for therapeutic intervention.


Subject(s)
14-3-3 Proteins/chemistry , 14-3-3 Proteins/metabolism , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , Amino Acid Sequence , Binding Sites/genetics , Coronavirus Nucleocapsid Proteins/genetics , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Escherichia coli , Humans , Mutation , Phosphopeptides/chemistry , Phosphopeptides/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , Phosphoserine/metabolism , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/metabolism , RNA, Viral/metabolism , Substrate Specificity
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.26.424450

ABSTRACT

The coronavirus nucleocapsid protein (N) controls viral genome packaging and contains numerous phosphorylation sites located within unstructured regions. Phosphorylated SARS-CoV N was shown to bind to the host 14-3-3 protein in the cytoplasm. Proteomic data indicate that seven human 14-3-3 proteins are highly abundant in human tissues vulnerable to SARS-CoV-2 infection, collectively reaching ~1.8% of all proteins in the lungs, ~1.4% in the gastrointestinal system, ~2.3% in the nervous system. Although the association between 14-3-3 and SARS-CoV-2 N proteins can represent one of the key host-pathogen interactions, its mechanism and the specific critical phosphosites were unknown. Here, we show that phosphorylated SARS-CoV-2 N protein (pN) dimers, reconstituted via bacterial co-expression with protein kinase A, directly associate, in a phosphorylation-dependent manner, with the dimeric 14-3-3 protein hub, but not with its monomeric mutant. We demonstrate that pN is recognized by all seven human 14-3-3 isoforms with various efficiencies and determine the apparent KD to selected isoforms in a low micromolar range. Serial truncations pinpointed a critical phosphorylation site to Ser197, located within the SR-rich region of N. The tight 14-3-3/pN association suggests it could regulate nucleocytoplasmic shuttling of N, while hijacking cellular pathways by 14-3-3 sequestration. As such, the assembly may represent a valuable target for therapeutic intervention.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.16.384040

ABSTRACT

The Coronavirus disease 2019 (COVID-19) has created an acute worldwide demand for sustained broadband pathogen suppression in households, hospitals, and public spaces. The latest surges in infections have surpassed 125,000 daily new cases in the US, the highest rates of the pandemic. In response, we have created a rapid-acting, self-sterilizing copper configuration capable of killing SARS-CoV-2 and other microbes in seconds. This highly active conformation destroys pathogens faster than any conventional copper configuration. The material maintains its antimicrobial efficacy over consecutive periods of use and is shelf stable. We have performed rigorous testing in accordance with guidelines from U.S. governing authorities and believe that the material could offer broad spectrum, non-selective defense against most microbes via integration into masks and other protective equipment.


Subject(s)
COVID-19
9.
Nat Immunol ; 21(11): 1336-1345, 2020 11.
Article in English | MEDLINE | ID: covidwho-889210

ABSTRACT

The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4+ and/or CD8+ epitopes, including six immunodominant regions. Six optimized CD8+ epitopes were defined, with peptide-MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8+ T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design.


Subject(s)
Antigens, Viral/immunology , Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/prevention & control , Epitopes, T-Lymphocyte/immunology , Humans , Immunodominant Epitopes/immunology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , United Kingdom , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL